INTERPOLATION EQUATION OF STATE FOR
WATER AND WATER VAPOR

B. V. Zamyshlyaev and M. G. Menzhulin

Here a procedure is given for the construction of an interpolation equation of state for water, taking
into account vaporization, dissociation, and the asymptotic behavior of matter under ultrahigh compression.
Well-known equations of state for water [1-3] are restricted to the range of experimental data on dynamic
compression (p < 1 Mbar) and general thermodynamic relationships are neglected in their formulation.

We represent the free energy F of water in an arbitrary state as the free energy F; of water in the
condensed state with corrections for vaporization, dissociation, hydrogen bonds, and electron excitation.
The various forms of internal motion within the molecules are considered to be independent, As was done
in [4], we assume that in the condensed state the water molecules have the following forms of motion: three
translational and two torsional vibrations, free rotation about the dipole axis, three internal motions of the
nuclei in the molecule, and on hydrogen bonds.

Moreover, it is supposed that the torsional oscillations are described by the Debye approximation.
The possibility of this has been indicated by a number of authors, and for certain molecules it provides a
sufficiently good approximation [5].

For water there is completely satisfactory agreement between the calculated and the actual specific
heat cy for V ~ 1 em3/g and supercritical temperatures .

Under these assumptions the expression for F; has the form

Fo=E, (V) + _ng In [(’9_713_)5 <%)/ i]; (1 —exp ’—%ﬂ w
= g

Here Ey is the energy of elastic interaction; J is the moment of inertia of water about the dipole axis;
6p, 04, and 0 are the characteristic temperatures for the Debye degrees of freedom, rotation, and intern-
al oscillations, respectively; T is the temperature in degrees Kelvin; R is the universal gas constant; p is
the molecular weight; h is Planck's constant; and k is Boltzmann's constant,

We introduce a correction to F; analogous to that in [6]
AF1=—5-§—T1D(1 -+ z1)
2 p

where the coefficient 5,4 is chosen to optimize agreement of the equation of state with well-known experi~
mental data on the static compression of water. We find the expression for z,(T, V) from the condition that
Fy + AF, should go over into the expression for the free energy F§ of water molecules in the ideal-gas
state for z; > 1.

Under the condition that the various degrees of freedom are independent, we have for water molecules
in the ideal-gas state
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Here V is the specific volume in cm?®/g and N is the number of particles in one gram,

One can assume that 9y is a function only of the specific volume. Then the dependence 6p(V) is
found from the relationship

v

6, =8, exp (— { quks (3)

Vo

Here y is the Gruneisen constant,

To make an approximate estimate of the effect of dissociation on the thermodynamic functions of
water we study the reaction

H,0=2H-10
We represent the correction to the free energy due to dissociation in the form
Ars=— LB pin 42y (4)
2 p
We find the dependence z,(V, T) from the condition that the expression F, + AF, +AF, should go over

into that for the free energy of water vapor in the fully dissociated ideal-gas state for z, >>1. In particular,
for z; > 1 we obtain

exp___TU (U /& = 1.106-10° °K)

Here U is the energy of dissociation of a water molecule.

The coefficient !/, in Eq. (4) is chosen in order to fulfill the condition z,y,,x > 1 behind a shock front
and to optimize the approximate relationship (4) as a correction calculated according to the principle of
minimization of free energy. In this case, for temperatures T= 7.4 - 10* °K water is represented as an
ideal-gas mixture of atoms of oxygen and hydrogen for all states coming within the restriction of the shock
adiabat.,

The components of the thermodynamic functions of water due to the hydrogen bonds can be estimated
from data on the specific heat and enthalpy of water [4, 7] and the value of the critical temperature T, =
647°K at which all hydrogen bonds are completely broken, As a first approximation we assume that in the
absence of vaporization (z; = 0) the number of hydrogen bonds is a function of temperature alone, Then that
part of the specific heat due to the hydrogen bonds is found as the difference between the total specific heat
cy@,Tyatv=1 cm?/ g and the specific heat determined on the basis of expression (1) and the relationship

8 o F

ov == | or7)
The value of the specific heat cyop(1, T),estimated in this way, can be approximated by the relation-
ship :

oyon (1, T) = _u_( 8 1.05 10-@)

From this we obtain the following expression for the free energy due to the hydrogen bonds, with z,=

)T

Fom (1, T) =§(—15.6 Ig T +5.25.10° — 2210
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Clearly, the probability W of the existence of hydrogen bonds is largest for z, = 0 and decreases with
increasing z,. For arbitrary values of z; we may assume that Fop is proportional to the probability W of
the existence of hydrogen bonds

Fop = WFor (1, T)

where W can be assumed to be of the form W=1/(@1 +z,).
From this we obtain, neglecting second-order terms,

R 687 —525.107372 —2.2.103
IL— 1 + Z3,

__ Cyom 1, T
vou =g T

Eop =

(T<TY

The hydrogen bonds have practically no effect on the pressure.

Thus, we have the following relationships for the thermodynamic functions of water:

F=E.+ % T1n [(6113) (RT—) " 1£[1(1 —exp —Tet> Az -+ Z2)_‘/’:] FFop+ Fe (5)

_ RT /5745
P"Px(V)“I'Fv(l_*_m +21't‘z )+Pe
3 (6)
R 3 =z 0;/T 2 g oLg 7,
E=Ex(V)+ET( 5_251+ _2_1+zz+i=2|1 expai/T—1)+1—|—zz +Eom +

The thermal part of the electron components E, and pg of the equations of state (5) and (6) can be
estimated in an approximate way by making use of Latter's solution of the Thomas-Fermi equations [8], the
approximation being fulfilled, for instance, in [9]. Regarding water as made up of cells in which a negative
charge of 10e (e being the charge of an electron) is smeared out uniformly, we obtain

LA0-472 s -1
o= 471.1074T (1 4 14 . ) atm )
1.235V 4 TV. 105 1,02 - 7.69.10-107"2p

0.3587" - 1.825- 10473y ]
E, = ( kg-cm/g
o Pe [ + T 1-2.94.105 — 25.4TV &

(8)

The function y (V) can be worked out from data on the static and dynamic compression of water, taking
account of its asymptotic values y =2/ for V— « and V- 0. The value y = % for V — 0 follows from the
properties of matter at ultrahigh compression, described by the Thomas-Fermi model, which yields the
asymptotic relationship Py ~ v-%/. 3. The quantity py and its derivatives determined the Gruneisen constant
according to the Landau-Slater and the Dugdail-Macdonald theories and the theory of a free region. Cal-
culations by any of these theories lead to the value y =% for V — 0,

Experimental data on the static compression of water have been approximated with great accuracy by
Juza [10], for instance, by an expression of the form given in [11, p. 233],

R ¥,
P OO+ ©

In the case where a(V, T) depends only on V, Eq. (5) coincides exactly with (9) for zy <1,

Accordingly, we can assume that vy = 1/5<1> and that the temperature dependence of a (V,T) is com~
pensated by the quantity z,.

The form of the dependence y (V) can be assumed for V < 1 cm?®/g. States with V > 1 em® /g corre-
spond to high temperature, for which the pressure is not determined by the Debye degrees of freedom alone,
and the simple relationship y = 1/5@ is no longer valid,
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For V > 1 we can introduce an interpolation function whose magnitude and first derivative coincide
with those of %@ at the point V = 1 em®/g and whose asymptotic value is y =% for V— .

A series of values of v (V) for V > 0.49 em®/g can be obtained from experimental data on reflection
of shock waves [12].

Introducing an interpolation function, coinciding in magnitude and the value of its first derivative with
Y& at V = 0.59 cm®/g and having the asymptotic value 7y =% for V — 0, we obtain a function y(V) for V<
0.59 cm?®/g which describes the experimental data of [12] in a satisfactory way.

Thus, we have

- 2 1 3
T(V)—~3—+1_2_V_1§3 (v<icm’/g
1.09008 , 0.835352 , 0.45304 , 0.396896  0.0155648 , 0.C0363725 3 (10)
T(V)=%(1+ 7 + 7 + 7e + vE V& +T) eB<v<tcm’/g
Y (V) =5 + 4.61874 125 (v<osem/g

And so the thermal components of the thermodynamic functions are completely determined,

The elastic components px (V) and Ex(V) can be determined from experimental data on static and

dynamic compression of water and water vapor. In the range of static pressures py can be determined in
the following way.

From the tabulated data of [7] and Bridgman's experimental data on isochors [13], a number of values
of T and the total pressure p were chosen. With use of the relationships (2), (3), (5), and (10) it is an easy
matter to determine the thermal component of the pressure py, corresponding to selected values of V and
T. Then the elastic component pyx is found as the difference between the total and the thermal pressures.
The values of py found in this way agree well among themselves over a wide range of measurements of the
overall pressure. Data corresponding to the calculations are given in Table 1. These characterize the
convergence of values of px for various values of p and, consequently, the overall error in the equation of
state as well,

In the domain of dynamic experiments py and Ey are found from the relationships

Py =Pp— P, Ep— Eo =2 (pp+ po) (Vo — V)
E,=—\pav, E=E +E

where the subscript I" indicates that values of the parameters of the medium are to be taken at a point im-
mediately behind the shock front and the subscript T indicates the thermal component of the corresponding
parameter,

Experimental data on shock compression of water are well approximated by the following relation-
ships between the velocity N of the shock front and the particle velocity v:

N=co+2v (» < 890t m/sec)
N =1.16¢y+1.73v (890 < v < 1840 m/sec) . (11)
N=1.73c0+1.28v (1840 < » < 13 000 I /sec)

TABLE 1. ‘ Here ¢, is the sound speed in the undisturbed
medium,
v, cm®/g /Py, atm
Under ultrahigh compression a nuclear gas may

0.74 95600/10400 | 26600/40500 _ l.oe consid(?red to be 1de.a1, an the electron component
0.76 13400/7450 15100/7350 16600/7140 is determined by relationships (7) and (8). Then the
g:gg gggg;:gggg ggggf:éggg 2388;:%?28 shock adiabat for water is easily calculated for this
1.0 20/—4980 300/-—5200 2300/—5190 domain of pressures. Results of the corresponding
1.2 250,/ —6600 850/—6700 — . . h .

3 245/—2530 300/—2550 1000/—2600 calculations are well approximated by relationships

o it ol B ol 1000/—1260 (11) in the range 2.53 - 10? < v < 1.5 - 10° m/sec, and
100 22/—8.8 34/—8.4 55/—8.0 also by the dependence
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As equations (11) describe both the experimental and the calculated results, they can evidently be used
for interpolation of the shock adiabat for water throughout the entire intermediate range.

In the calculation of px and Ey the interaction of all the particles — nuclei and electrons — is taken into
account simultaneously. Figure 1 shows values of px (curve 2) and the shock adiabat (curve 1) calculated
in this way, and also experimental data on shock compression of water from [12, 14] (points 3 and 4, respec-
tively).

Approximate formulas for py (in atmospheres) can be represented in the form

1.26-10° s
p,=— _VI-M (V>2 em /g)

_ 48-100(1 —V/0.837)
TPV — 1.7 (4 — V/0.837]

Px @s<V<20 cm¥/g)

2.63114.108 1.75454 108 3.6183.10°
Vv + V2 - V3 0s<V <08 »cm3/g)

5.31.40%
Px == Tyses (V<06 cm‘"‘/g)

Py = 1.25701 —

Having obtained the thermodynamic functions of water, one can make approximate calculations of the
vaporization, dissociation, and electron excitation, Within the range of the experimental data on static com-
pression of water the error in pressure in the equation of state obtained here does not exceed a few percent,

Estimates of errors in the thermodynamic functions in the domain of ultrahigh pressures are impos-
sible since, at the present time, neither experimental nor rigorous theoretical results on the thermodynam-
ic properties of water in this domain are available,

However, satisfaction of all asymptotic transitions and an estimate of the shock adiabat that takes ac-
count of the asymptotic laws of the behavior of water evidently ensures an accuracy sufficient for practical
calculations in this domain as well. In particular, this is attested to by the good agreement between experi-
mental data on the temperature behind a shock front from [15] and the curve, constructed on the basis of
calculation, in Fig, 2.

LITERATURE CITED

1. M. H, Rice and J. M. Walsh, "Equation of state of water to 250 kilobars," J, Chem. Phys., 26, No. 4
(1957).

2. N. M. Kuznetsov, "Equation of state and specific heat of water over a wide range of the thermo~
dynamic parameters," Zh, Prikl. Mekhan, i Tekh. Fiz., No. 1 (1961).

3. R.A, Papetti and M. Fujisaki, "The Rice and Walsh equation of state for water: discussion, limita-
tions, and extensions,” J. Appl. Phys., 39, No, 12 (1968),

449



4.

(5]

10.

11,

12.

13.
14.

15.

450

G. Nemethy and H, A, Scheraga, "Structure of water and hydrophobic bonding in proteins. I. A model
for the thermodynamic properties of liquid water," J, Chem, Phys., 36, No, 12 (1962).

Ch'ien Hsueh-sien, Physical Mechanics [in Russian], Mir, Moscow (1965).

S. B. Kormer, A, I, Funtikov, V, D, Urlin, and A, N, Kolesnikova, "Dynamic compression of porous
metals and an equation of state with variable specific heat for high temperatures," Zh. fksp. i Teor.
Fiz., 42, No. 3 (1962).

M. P. Bukalovich, Thermophysical Properties of Water and Water Vapor [in Russian], Mashino-
stroenie, Moscow (1967).

R. Latter, "Temperature behavior of the Thomas-Fermi statistical model for atoms," Phys. Rev.,
99, No, 6 (1955),

S. V. Bobrovskii, V. M, Gogolev, and B. V., Zamyshlyaev, "Construction of approximate shock
adiabats for solid bodies in the hydrodynamic domain,” Dokl. Akad. Nauk SSSR, 184, No. 3 (1969).

J. Juza, "An equation of state for water and steam,"in: Advances in Thermophysical Properties at
Extreme Temperature and Pressure, Amer. Soc. Mech. Engrs., New York (1965),

J. O. Hirschfelder, C, F. Curtiss, and R, B. Bird, Molecular Theory of Gases and Liquids, Wiley
New York (1954),

J.Walsh and M. H. Rice, "Dynamic compression of liquids from measurements on strong shock
waves," J. Chem, Phys., 26, No, 4 (1957).

P. V. Bridgman, "Most recent work in the high-pressure domain," Usp. Fiz. Nauk, 31, No. 1 (1947).
L. V. Al'tshuler, A, A, Bakanova, and R. F., Trunin, "Phase changes in water under compression by
strong shock waves," Dokl. Akad. Nauk SSSR, 121, No. 1 (1958).

S. B. Kormer, "Optical investigations of properties of shock-compressed, condensed dielectrics,"
Usp. Fiz. Nauk, 94, No. 4 (1968).



